Description of the simulation window

The simulation has two windows with an x, y coordinate system. As default the left one shows a power function (parabola) of fourth grade. Its roots are to be calculated (the x values for which y is zero). Its formula is visible in a text field:

y =  0.1(x+4)(x+1)(x-2)(x-3)-0.1

= 0.1(x4 - 3x2 + 10x + 23)

The first formulation indicates that there are 4 roots which are near to the integers -4, -1, 2 and 3. Substituting the constant element (-0.1) by 0, these integers would be exact solutions. The roots of the predefined function are irrational numbers.

The range of the x coordinate goes from -xmax to +xmax. The default value of xmax is 5; it can be changed in the number field. The range of the y coordinate goes from -12 to +12. Changing to another y scaling is achieved by using appropriate factors (default 0,1) in the editable formula.

The magenta colored point is the starting point of the calculation (default x0= - 4.5). It can be drawn with the mouse along the function curve to another abscissa. While the blue iteration points wanders along the curve in the positive x direction, the starting point stays fixed till a root has been calculated with the required accuracy delta. Then it will jump to this root.

The required deviation from exactly zero delta = y -0 can be defined in the white number field (default 0.00001). The current deviation during the calculation process is shown in the gray y field below. Two gray number fields retain the values xo and y0 of the initial point and hence also of the last root found.

The current iteration point is shown in blue. Once a root has been calculated with the required precision, it jumps to the first point of the next iteration.

At high accuracy, the movement of the iteration point will no longer be recognizable after a few iteration steps. For this reason the right window shows a zoomed section of the curve with self adjusting scales. Up o 4 consecutive points of the iteration are retained, the current one blue, three trailing ones in red (after a flyback blue and red coincide for one point).

In the zoom window one can follow the flybacks of the iteration process and the reduction of the x step by a factor of 10 at such an event up to the highest resolution. During this process the curve will appear more and more like a straight line.

The Start/ Stop button controls the iteration process. Restart leads back to the default situation. The number of iteration steps per second is defined by the slider speed between 1 and 25 (default 2). Default stops the iteration when a root has been found; to get the next one shift the initial point with the mouse and Start again. Refusing the Option One root only calculates all roots in consecutve order.

The speed of the Simulation is determined by the stepwise time control of visualization. It has no relation to the very short time interval which the computer would need to calculate a new root without these interruptions

The text field of the formula is editable. You can input any formula to determine its roots. Take care to adjust xmax and the ordinate scale to the specifics of the function.