The transition from the difference quotient to the differential quotient (first derivative) is demonstrated for the sine function.
y = sin(x)
Difference quotient (x1 ) = (y2 - y1)/(x2 -x1)
Differential quotient dy/dt (x1 ) = Limit for x2→ x1 of (y2 - y1)/(x2 -x1)
The zero ordinate line y=0 is drawn in red. The blue model point x1 , y1, is defined with the slider. Drawing the red point with the mouse defines the second point x2 , y2. The line connecting both points (secant) is drawn in black, and is prolongated beyond the second point in green.
The difference of the ordinates (y2 - y1) is shown as a red arrow, the difference of the abscissa (x2 -x1) as a blue one.
The difference quotient (y2 - y1)/(x2 -x1), which is the tangent of the angle between both components at the model point, is shown as a magenta colored point.
The analytic first derivative function cos(x) = d(sin(x))/dx is drawn as a beige line.
Choose any arbitrary model point with the slider. Draw the red point closer and closer to the blue model point. In the limit of this process the secant turns into a tangent at the model point, and the difference quotient becomes a point on the derivative = the differential quotient at the model point.